You are here Home / rumus matematika / Soal Matematika 15 Soal Turunan Aljabar dan Trigonometri Guys, rumushitung ada soal matematika nih. Ada 20 soal tentang turunan fungsi aljabar dan trigonometri. Bagi kalian yang belum mempelajari bisa cari di laman Pada soal ini sudah ada pembahasannya. Jadi, kalian yang masih bingung cara mengerjakannya bisa melihat pembahasan soal. Ingat ! Rumus Turunan Aljabar fx = k → f'x = 0 k = konstantafx = x → f'x = 1fx = kx → f'x = kfx = kUx → f'x = kU'xfx = axn → f'x = = U ± V → f'x = U’ ± V’fx = U x V → f'x = U’ V + V’ Ufx = U/V → f'x = U’ V – V’ U/V2fx = Uxn → f'x = nUxn-1 . U'x Rumus Turunan Trigonometri fx = sin x → f'x = cos xfx = cos x → f'x = -sin xfx = sin ax → f'x = a cos axfx = cos ax → f'x = -a sin axfx = tan x → f'x = sec2 xfx = cot x → f'x = -csc2 xfx = sec x → f'x = sec x tan xfx = csc x → f'x = -csc x cot xfx = siny ax → f'x = y sin ax . a cos ax Soal dan Pembahasan Turunan Aljabar dan Trigonometri 1. Turunan pertama dari fx = 5x + 1 adalah . . . A. 5xB. 5C. 5x + 1D. 1E. 0 Pembahasan fx = 5x + 1f'x = 1 . 5x1-1 + 0f'x = 5 B 2. Turunan pertama dari fx = 5x2 – 10x – 3 adalah . . . A. 5x – 10B. 5x + 10C. 10x – 10D. 10x + 10E. 5x2 – 10 Pembahasan fx = 5x2 – 10x – 3f'x = 2 . 5x2-1 – 10 – 0f'x = 10x – 10 C 3. Diketahui f'x = 14 dan fx = 2x2 + 6x -9. Nilai x yang memenuhi setelah turunan adalah . . . A. 2B. -2C. 3D. -4E. 4 Pembahasan fx = 2x2 + 6x – 9f'x = 4x + 6 Maka,f'x = 144x + 6 = 144x = 14 – 64x = 8x = 2 A 4. Turunan pertama dari fx = 3sin 3x adalah . . . A. 3cos 3xB. -9cos 3xC. 9cos 3xD. -3cos 3xE. -9sin 3x Pembahasan fx = 3sin 3xf'x = 3 . 3cos 3xf'x = 9cos 3x C 5. Diketahui fx = 7x2 – 53x2 + 3x – 5, nilai dari f'3 = . . . A. 1520B. 2423C. 3155D. 2520E. 3255 Pembahasan fx = 7x2 – 53x2 + 3x – 5U = 7x2 – 5 → U’ = 14xV = 3x2 + 3x – 5 → V’ = 6x + 3 fx = U . Vf'x = U’ V + V’ Uf'x = 14x 3x2 + 3x – 5 + 6x + 37x2 – 5f'3 = 143 332 + 33 – 5 + 63 + 3732 – 5f'3 = 4227 + 9 – 5 + 18 + 363 – 5f'3 = 4231 + 2158f'3 = 1302 + 1218f'3 = 2520 D 6. Jika fx = 2f'x dengan fx = x2 + 3. Nilai x yang memenuhi adalah . . . A. 1 dan 3B. -1 dan 3C. -3 dan -1D. -3 dan 1E. -1 dan 1 Pembahasan fx = x2 + 3f'x = 2x Maka,fx = 2f'xx2 + 3 = 22xx2 – 4x + 3 = 0x – 1x – 3 = 0x = 1 V x = 3 Jadi,x = 1 dan 3 A 7. Diketahui turunan f'x = 12. Jika fx = 1/3x3 – 4x + 3 dan x adalah bilangan bulat positif, maka nilai x setelah diturunkan adalah . . .A. 0B. 1C. 2D. 3E. 4 Pembahasan fx = 1/3x3 – 4x + 3f'x = x2 – 4 Maka,f'x = 12x2 – 4 = 12x2 = 16x = -4 dan x = 4Nilai x yang bilangan positif adalah 4 E 8. Turunan pertama fx = 3x2 sin2 3x adalah . . . A. 6xsin2 3x – 3x sin 3x cos 3xB. 6xsin2 3x + 3x sin 3x cos 3xC. 3xsin2 3x + 3x sin 3x cos 3xD. 3xsin2 3x – 3x sin 3x cos 3xE. 6xsin2 x + 3x sin x cos x Pembahasan fx = 3x2 sin2 3xU = 3x2 → U’ = 6xV = sin2 3x → V’ = 2sin 3x . 3cos 3xatau V’ = 6sin 3x cos 3x f'x = U’ V + V’ Uf'x = 6x sin2 3x + 6sin 3x cos 3x3x2f'x = 6x sin2 3x + 18x2 sin 3x cos 3xf'x = 6xsin2 3x + 3x sin 3x cos 3x B 9. Diketahui fungsi fx = 9x2 + 16x + 9 dan gx = x2 – 3x + 4. Nilai dari f'g'3 = . . . A. 60B. 70C. 80D. 90E. 100 Pembahasan fx = 9x2 + 16x + 9f'x = 18x + 16 gx = x2 – 3x + 4g'x = 2x – 3 Maka,f'g'x = 182x – 3 + 16f'g'3 = 1823 – 3 + 16f'g'3 = 54 + 16f'g'3 = 70 B 10. Turunan kedua dari fx = 3x4 + 4x3 – 3x2 – 2x + 4 adalah . . . A. 36x2 – 24x – 6B. 36x2 + 24x – 6C. 36x2 + 24x + 6D. 12x2 + 24x – 6E. 12x2 – 24x – 6 Pembahasan fx = 3x4 + 4x3 – 3x2 – 2x + 4f'x = 12x3 + 12x2 – 6x – 2turunan pertama f'x = 12x3 + 12x2 – 6x – 2f”x = 36x2 + 24x – 6 Bturunan kedua 11. Jika gx = 2x – 32, maka g'2 = . . . A. 1B. -1C. 2D. -4E. 4 Pembahasan gx = 2x – 32g'x = 2 2x – 32-1 . 2g'x = 22x – 3 . 2g'x = 42x – 3g'2 = 422 – 3g'2 = 4 E 12. Turunan kedua fungsi fx = csc2 x adalah . . . A. 2csc2 x cot xB. -csc2 x cot xC. -2csc2 x cot xD. csc2 x cot xE. -2csc x cot x Pembahasan fx = csc2 xf'x = 2csc x . -csc x cot xf'x = -2csc2 x cot x C 13. Jika fx = sin2 x – cos2 x, maka f'π/6 = . . . A. √3B. 0C. -√3D. 2√3E. -2√3 Pembahasan fx = sin2 x – cos2 xf'x = 2sin x . cos x + 2cos x . sin xf'π/6 = 2sin π/6 . cos π/6 + 2cos π/6 . sin π/6f'π/6 = 21/2√3/2 + 2√3/21/2f'π/6 = √3/2 + √3/2f'π/6 = √3 A 14. Jika px = x2 – 3 dan qx = 2x2 + 1, maka nilai p'2 – 2q'-2 adalah . . . A. 20B. 30C. 40D. 50E. 60 Pembahasan px = x2 – 3p'x = 2x qx = 2x2 + 1q'x = 4x Maka,= p'2 – 2q'-2= 22 – 24-2= 4 + 16= 20 A 15. Diketahui fx = 4x2 – 1/x2 – 2x + 1, maka f'-1 = . . . A. 1B. -2C. 3D. -4E. 5 Pembahasan fx = 4x2 – 1/x2U = 4x2 – 1 → U’ = 8xV = x2 → V’ = 2x f'x = U’ V – V’ U/V2f'x = [8x . x2 – 2x . 4x2 – 1]/x22f'x = 8x3 – 8x3 + 2x/x4f'x = 2x/x4f'x = 2/x3f'-1 = 2/-13f'-1 = 2/-1f'-1 = -2 B Itulah beberapa soal matematika tentang turunan aljabar dan trigonometri. Semoga yang rumushitung share di atas dapat menambah ilmu wawasan dan pengetahuan kalian. Semoga bermanfaat dan sekian terima kasih.ContohSoal dan Jawaban Turunan Fungsi Trigonometri Doc 11-20: Download: Soal dan Kunci Jawaban Turunan Fungsi Trigonometri Doc 21-31: Download: Baiklah, itu tadi kumpulan soal yang bisa teman teman unduh dan pelajari atau bisa juga di cetak/print melalui perangkat samrtphone maupun laptop/PC Anda.
Matematika Dasar » Turunan Fungsi › Turunan Trigonometri, Contoh Soal dan Pembahasan Turunan Fungsi Konsep turunan juga berlaku untuk fungsi trigonometri seperti fungsi sinus, cosinus, dan tangen, serta kebalikan masing-masing fungsi tersebut yakni fungsi cosecan, secan, dan cotangen. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Pada artikel sebelumnya, kita telah membahas konsep turunan khususnya untuk fungsi aljabar beserta contoh soal dan pembahasannya. Sekarang kita akan lanjutkan materi tersebut untuk turunan yang melibatkan fungsi trigonometri seperti fungsi sinus sin, cosinus cos, dan tangen tan, serta kebalikan dari masing-masing fungsi tersebut yakni fungsi cosecan csc, secan sec, dan cotangen cot. Ingat bahwa terdapat beberapa cara untuk menotasikan turunan yakni \D_x, f'x, y', \frac{dfx}{dx}\ dan \ \frac{dy}{dx} \. Kita akan menggunakan beberapa notasi turunan tersebut secara bergantian pada artikel ini. Proses pencarian turunan fungsi trigonometri akan banyak melibatkan rumus identitas trigonometri, sehingga sangat disarankan kamu untuk memahami materi tersebut terlebih dahulu. Untuk mencari turunan fungsi sinus atau \D\sin{x}\, kita bisa menggunakan definisi turunan dan identitas penambahan untuk \\sin{x+h}\. Kita peroleh sebagai berikut. Perhatikan bahwa dua limit pada dua ekspresi terakhir ini sesungguhnya merupakan limit yang telah kita pelajari pada pembahasan mengenai limit. Dan kita telah membuktikan bahwa Jadi, Dengan cara serupa, kita dapat mencari turunan fungsi cosinus yaitu Kita ringkaskan hasil-hasil ini dalam sebuah teorema penting. TEOREMA Fungsi \fx = \sin{x}\ dan \gx = \cos{x}\ keduanya dapat didiferensialkan dan, Untuk mencari turunan fungsi tangen atau \D\tan{x}\, kita bisa menggunakan definisi turunan dan identitas penambahan untuk \\tan{x+h}\, yakni Sebenarnya ada cara mudah untuk mencari turunan dari fungsi tangen, yakni kita dapat gunakan kesamaan \ \tan x = \frac{\sin x}{\cos x} \ dan kemudian menerapkan rumus turunan untuk hasil bagi dua fungsi. Misalkan \ u = \sin x \ dan \ v = \cos x \, maka berdasarkan turunan untuk hasil bagi, kita peroleh Turunan Fungsi \ \csc x, \sec x \ dan \ \tan x \ Untuk mencari turunan fungsi \ \csc x, \sec x \ dan \ \tan x \, kita dapat memanfaatkan kesamaan bahwa dan kemudian menerapkan rumus turunan untuk hasil bagi dua fungsi seperti yang telah kita contohkan untuk mencari turunan fungsi tangen. Dari hasil perhitungan diperoleh Perhatikan beberapa contoh soal berikut Contoh 1 Cari turunan dari \ fx = 3 \sin x - 2 \cos x \ Pembahasan Contoh 2 Cari turunan dari \ y = 3 \sin 2x \. Pembahasan Kita memerlukan turunan dari \\sin{2x}\; sayangnya, dari penjelasan di atas kita hanya tahu bagaimana mencari turunan dari \\sin{x}\. Tetapi, karena \\sin{2x} = 2 \sin{x} \cos{x}\, kita peroleh Contoh 3 Diketahui \fx = 2 \sin 2x\, maka turunan dari fungsi tersebut adalah \ f’x = \cdots \ \ 4 \cos x \ \ 4 \cos 2x \ \ 4 \sin x \ \ -4 \sin 2x \ \ 4 \sin 2x \ Pembahasan Ingat bahwa turunan dari \ fx = a \sin bx \ adalah \f’x = ab \cos bx\. Dengan demikian turunan dari \fx = 2 \sin 2x\ adalah \ f’x = 4 \cos 2x \. Jawaban B. Contoh 4 Diketahui \ fx=\sin^2 x \, maka turunan dari fungsi tersebut adalah \ f’x = \cdots \ \ 2 \sin x \cdot \cos x \ \ 2 \sin 2x \cdot \cos x \ \ 2 \sin x \cdot \cos 2x \ \ \sin^3 x \ \ 2 \sin x \ Pembahasan Ingat bahwa untuk \ fx = u^nx \ di mana \ ux = gx \ maka turunan dari \fx\ adalah \ f’x = nu^{n-1}x \cdot u’x \. Dalam kasus ini, turunan dari \ fx = \sin^2 x \ adalah \ f’x = 2 \sin x \cdot \cos x \. Jawaban A. Contoh 5 Turunan pertama dari \ y = 3 \sin x -\cos x \ adalah \ y’ = \cdots \ \ 3 \cos x - \sin x \ \ 3 \cos x + \sin x \ \ \cos x + 3 \sin x \ \ -3 \cos x - \sin x \ \ -3 \cos x + \sin x \ Pembahasan Turunan pertama dari \ y = 3 \sin x -\cos x \, yaitu \begin{aligned} y &= 3 \sin x -\cos x \\[8pt] y' &= 3 \cos x -\sin x \\[8pt] &= 3 \cos x + \sin x \end{aligned} Jawaban B. Contoh 6 Turunan pertama dari \ y = 2 \sin 3x-3 \cos 2x \ adalah \ y’ = \cdots \ \ 6 \cos 3x+6 \sin 2x \ \6 \cos 3x-6 \sin 2x \ \ 6 \cos x + 6 \sin 2x \ \ 6 \cos 3x+6 \sin x \ \ 6 \cos x + 6 \sin x \ Pembahasan Turunan pertama dari \y\, yaitu \begin{aligned} y &= 2 \sin 3x-3 \cos 2x \\[8pt] y' &= 2 \cdot 3 \cos 3x - 3-2\sin 2x \\[8pt] &= 6 \cos 3x + 6\sin 2x \end{aligned} Jawaban A. Contoh 7 Diketahui \ fx =x^4 \sin 2x \, maka turunan dari fungsi tersebut adalah \ f’x = \cdots \ \ xx \cos 2x-2\sin 2x \ \ x^2\cos 2x+\sin 2x \ \ x^3\cos 2x+2\sin 2x \ \ 2x^3\cos 2x-2\sin 2x \ \ 2x^3x \cos 2x+2 \sin 2x \ Pembahasan Untuk menyelesaikan soal ini, kita perlu menggunakan sifat turunan perkalian. Misalkan \ u = x^4 \ dan \v = \sin 2x\ sehingga diperoleh berikut \begin{aligned} fx &= x^4 \sin 2x \Leftrightarrow fx = u \cdot v \\[8pt] f'x &= u'v+uv' \\[8pt] &=4x^3 \cdot \sin 2x + x^4 \cdot 2 \cos 2x \\[8pt] &= 4x^3 \sin 2x + 2x^4 \cos 2x \\[8pt] &= 2x^3 2 \sin 2x + x\cos 2x \end{aligned} Jawaban E. Contoh 8 Diketahui \ fx = \sin 2x \cos 3x \, maka turunan dari fungsi tersebut adalah \ f'\left\frac{\pi}{4}\right = \cdots \ \ -\frac{3}{2} \sqrt{2} \ \ -\frac{1}{2} \sqrt{2} \ \ 0 \ \ \sqrt{2} \ \ 3\sqrt{2} \ Pembahasan Untuk menyelesaikan soal ini, kita bisa menggunakan rumus turunan perkalian, yakni misalkan \ u = \sin 2x \ dan \v = \cos 3x\ sehingga diperoleh berikut ini \begin{aligned} fx &= \sin 2x \cos 3x \Leftrightarrow fx = u \cdot v \\[8pt] f'x &= u' \cdot v+u \cdot v' \\[8pt] &= 2\cos 2x \cdot \cos 3x + \sin 2x \cdot -3 \sin 3x \\[8pt] &= 2\cos 2x \cos 3x - 3 \sin 2x \sin 3x \\[8pt] f'\left\frac{\pi}{4}\right &= 2\cos 2\left\frac{\pi}{4}\right \cdot \cos 3\left\frac{\pi}{4}\right - 3 \sin 2\left\frac{\pi}{4}\right \cdot \sin 3\left\frac{\pi}{4}\right \\[8pt] &= 2 \cos 90^\circ \cdot \cos 135^\circ - 3 \sin 90^\circ \cdot \sin 135^\circ \\[8pt] &= 2 \cdot 0 \cdot \left -\frac{1}{2}\sqrt{2}\right - 3 \cdot 1 \cdot \left\frac{1}{2}\sqrt{2}\right \\[8pt] &= -\frac{3}{2}\sqrt{2} \end{aligned} Jawaban A. Contoh 9 Diketahui \ fx = \sqrt{\cos 3x} \ maka turunan dari fungsi tersebut adalah \ f’x = \cdots \ \ -\frac{\sin 3x}{ 2 \sqrt{\cos 3x} } \ \ -\frac{3\sin 3x}{ 2 \sqrt{\cos 3x} } \ \ \frac{3\sin 3x}{ \sqrt{\cos 3x} } \ \ \frac{3\sqrt{\cos 3x}}{ 2\sin 3x } \ \ \frac{\sqrt{\cos 3x}}{ 2 \sin 3x } \ Pembahasan Ingat bahwa untuk \ fx = \sqrt{ux} \ maka turunannya yaitu \ f’x = \frac{\cdot u’x}{2\sqrt{\cdot u’x}} \. Dengan demikian, turunan dari \fx = \sqrt{\cos 3x}\, yaitu \ f'x = \frac{-3 \sin 3x}{2 \sqrt{\cos 3x}} \. Jawaban B. Contoh 10 Diketahui \ fx = \frac{2+\cos x}{\sin x} \ maka turunan dari fungsi tersebut adalah \ f’x = \cdots \ \ \frac{1+2\cos x}{\sin^2 x} \ \ \frac{1-2\cos x}{\sin^2 x} \ \ \frac{-1+2 \cos x}{\sin^2 x} \ \ \frac{-1-2 \cos x}{\sin^2 x} \ \ \frac{1+2 \cos x}{ 2 \sin^2 x } \ Pembahasan Untuk mengerjakan soal ini kita bisa gunakan sifat turunan pembagian, yakni misalkan \ u = 2 + \cos x \ dan \ v = \sin x \ sehingga diperoleh \begin{aligned} fx &= \frac{2+\cos x}{\sin x} \Leftrightarrow fx = \frac{u}{v} \\[8pt] f'x &= \frac{u' \cdot v-u \cdot v'}{v^2} \\[8pt] &= \frac{-\sin x \cdot \sin x - 2+\cos x \cdot \cos x}{\sin^2 x} \\[8pt] &= \frac{-\sin^2 x-2\cos x-\cos^2 x}{\sin^2 x} \\[8pt] &= \frac{-\sin^2x + \cos^2 x - 2\cos x}{\sin^2 x} \\[8pt] &= \frac{-1-2\cos x}{\sin^2 x} \end{aligned} Jawaban D. Contoh 11 Diketahui \ fx = \frac{1-\cos x}{\sin x} \, dengan \ \sin x \neq 0 \ maka \ f’\frac{\pi}{4} \ adalah… \ \sqrt{2}-1 \ \ \sqrt{2}+1 \ \ 1 \ \ 2-\sqrt{2} \ \ 2+\sqrt{2} \ Pembahasan Untuk menyelesaikan soal ini kita bisa menggunakan rumus turunan pembagian, yakni misalkan \ u = 1-\cos x \ dan \v = \sin x\ sehingga diperoleh \begin{aligned} fx &= \frac{1-\cos x}{\sin x} \Leftrightarrow fx = \frac{u}{v} \\[8pt] f'x &= \frac{u' \cdot v-u \cdot v'}{v^2} \\[8pt] &= \frac{-\sin x \cdot \sin x - 1-\cos x \cdot \cos x}{\sin^2 x} \\[8pt] &= \frac{\sin^2 x-\cos x+\cos^2 x}{\sin^2 x} \\[8pt] &= \frac{1-\cos x}{\sin^2 x} \\[8pt] f'\left \frac{\pi}{4} \right &= \frac{1-\cos \frac{\pi}{4}}{\sin^2 \frac{\pi}{4}} = \frac{1-\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}^2} \\[8pt] &= \frac{1-\frac{1}{2}\sqrt{2}}{\frac{1}{2}} = 2 - \sqrt{2} \end{aligned} Jawaban D. Contoh 12 Diketahui \ fx = 1+x^2 \cos x \ maka \ f’\pi \ adalah… \ -\pi \ \ 0 \ \ -2\pi \ \ \pi+1 \ \ 2\pi-1 \ Pembahasan Untuk menyelesaikan soal ini, bisa gunakan sifat turunan perkalian, yaitu misalkan \ u = 1+x^2 \ dan \v=\cos x\ sehingga diperoleh \begin{aligned} fx &= 1+x^2 \cos x \Leftrightarrow fx = u \cdot v \\[8pt] f'x &= u' \cdot v+u \cdot v' \\[8pt] &= 2x \cdot \cos x + 1+x^2 \cdot -\sin x \\[8pt] &= 2x \cos x -1+x^2 \sin x \\[8pt] f'\pi &= 2\pi \cdot \cos \pi-1+\pi^2 \sin \pi \\[8pt] &= 2\pi \cdot -1 -1+\pi^2 \cdot 0 \\[8pt] &= -2\pi \end{aligned} Jawaban C. Cukup sekian penjelasan mengenai turunan fungsi trigonometri beserta contoh soal dan pembahasannya dalam artikel ini. Semoga bermanfaat. Sumber Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. 2007. Calculus, ed 9. Penerbit Pearson. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
H5Agbrz.